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ABSTRACT: Imperfectness of the state-of-the-art intensity forecasting of tropical cyclones (TCs) necessitates indepen-
dent rapid intensification (RI) prediction schemes. Here, we report one derived with an explainable artificial intelligence
Wide Learning (WL). The scheme, named Wide Learning-based TC rapid intensification prediction scheme (WRPS), ver-
sion 1 (WRPS1), predicts RI in the western North Pacific by using twelve predictor variables representing environmental
conditions and the state of TCs. Its prediction is based on a score that is a linear combination of whether or not (1 or 0)
joint conditions on ranges of multiple variables are met, which is reproducible without WL. Relying on joint conditions al-
lows WRPS to handle nonlinearity and interdependence among predictors, and the simpleness of the conditions provides
explainability. A method to map an RI-prediction score to its probability is proposed and is used in WRPS. It is suggested
that handling predictors favorable to RI when having moderate values, such as the current intensity, is a key for good RI
prediction. It is demonstrated that quantifying the contribution of each predictor to the WRPS score helps one elucidate
how the predictors jointly facilitated or hindered RI for each prediction case. The performance of WRPS1 is compared
with RI predictions using the linear discriminant analysis, and WRPS1 is shown to perform well without using track predic-
tions. The multiple linear regression analysis, which is customarily used for intensity prediction but not for RI prediction, is
shown to perform well if the fraction of RI cases is increased when conducting regression.

SIGNIFICANCE STATEMENT: We developed a new scheme to predict rapid intensification of tropical cyclones,
WRPS version 1, by using an explainable artificial intelligence. Its prediction is based only on 12 parameters, but it performs
well. The WRPS prediction formula is simple and reproducible by using information available in the supplemental material
of this paper. It is suggested that handling predictors favorable to RI when having moderate values, such as the current in-
tensity, is a key for good RI prediction. It is demonstrated that quantifying the contribution of each predictor to the WRPS
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score helps one elucidate how the predictors jointly facilitated or hindered RI for each prediction case.

KEYWORDS: Tropical cyclones; Probability forecasts/models/distribution; Statistical forecasting

1. Introduction

Accurate predictions of tropical cyclones (TCs) have enor-
mous socioeconomic benefits. Although their track forecasts
have been steadily improving, their intensity forecasts suffer
from slow progress (e.g., DeMaria et al. 2014; Zhang et al.
2023; Wang et al. 2023). Because of the limited performance
of physically based numerical atmospheric forecasts, empirical
statistical methods are widely used supplementarily in opera-
tional forecasts.
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P Supplemental information related to this paper is available at
the Journals Online website: https://doi.org/10.1175/WAF-D-24-
0228.s1.

Corresponding author: Takeshi Horinouchi, horinout@ees.
hokudai.ac.jp

DOI: 10.1175/WAF-D-24-0228.1

The most widely used empirical intensity forecast method is
the Statistical Hurricane Intensity Prediction Scheme (SHIPS)
(DeMaria and Kaplan 1994, 1999; DeMaria et al. 2005). SHIPS
relies on the multiple linear regression (MLR) of intensity
changes onto some predictors, which are numerical quantities re-
garding along-track environmental conditions (e.g., ocean heat
content, SST, and the horizontal wind shear between the upper
and lower troposphere), the current state of the TC (e.g., maxi-
mum sustained wind, which shall be called VMAX in what fol-
lows), and their combinations [e.g., maximum potential intensity
(MPI) minus VMAX, which is customarily called as potential
intensification (POT)]. In addition to its practical merit by its
performance, SHIPS provides knowledge on intensification
mechanisms through regression coefficients of the predictors.
Also, SHIPS provides explanation on each prediction by elu-
cidating the contribution of each predictor.

Each SHIPS model is derived for each ocean basin. DeMaria
et al. (2005) derived it for the Atlantic and the eastern North
Pacific. Knaff et al. (2005) and Yamaguchi et al. 2018 (Y18
hereinafter) derived ones for the western North Pacific. SHIPS
is based on the “perfect prog” approach, in which the predictors
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for training are derived from observations and/or objective (re-
analysis) products. For environmental variables, it is customary
to use temporal averages along observed tracks over the fore-
cast period (say, t = 0-24 h, where ¢ denotes the forecast time).
This approach is adequate when the actual forecast of the TC
track and the environmental variables are good enough. More
recently, many studies were conducted to forecast TC intensity
using machine learning (ML; e.g., Sharma et al. 2013; Chaudhuri
et al. 2013; Wimmers et al. 2019; Cloud et al. 2019; Xu et al.
2021; Meng et al. 2023; Chen et al. 2023; Shimada 2024).

The rapid intensification (RI) of TCs does not have a uni-
versal definition but is customarily defined as a 1- or 10-min
VMAX increase of around 30 kt (1 kt ~ 0.51 m s~ ') over 24 h
(e.g., Kaplan and DeMaria 2003). It is sometimes defined with
respect to the central pressure drop (Holliday and Thompson
1979). Predicting RI is beneficial for society but is challenging
as it is to predict relatively infrequent intensity changes
(Fudeyasu et al. 2018). Fudeyasu et al. (2018) statistically in-
vestigated the characteristics of TCs undergoing RI in the
western North Pacific over 37 years from 1979 to 2015. Out of
the 900 TCs, 201 TCs underwent RI defined by a 10-min
VMAX increase of 30 kt or more over 24 h.

The imperfectness of intensity prediction necessitates inde-
pendent RI prediction. Kaplan et al. (2010; K10 hereinafter)
developed a deterministic and probabilistic RI prediction
scheme based on the linear discriminant analysis (LDA) using
SHIPS predictors, and they applied it to the Atlantic and the
eastern North Pacific. Rozoff and Kossin (2011; R11 hereinaf-
ter) also used SHIPS predictors for RI prediction and tested
two additional methods, logistic regression (LR) and a Naive
Bayesian probabilistic model. They found that LR yielded
better skill scores than LDA and the Bayesian model. They
also showed that a consensus prediction in which the proba-
bilities from the three methods are averaged tends to provide
better prediction than any of the three, indicating the impor-
tance of using multiple prediction methods. Kaplan et al.
(2015) also tested the three models and obtained similar re-
sults. Knaff et al. (2020) describe an operational RI prediction
system for the Joint Typhoon Warning Center TC forecast
area of responsibility. Sampson et al. (2023) present several RI
predictions schemes and the formulation of a consensus RI
methodology for use in the western North Pacific, Southern
Hemisphere, and north Indian Ocean.

Recent development of RI predictions naturally includes the
use of ML techniques. Gao et al. (2016) introduced a decision
tree approach to statistical RI forecast. Shaiba and Hahsler
(2016) tried several methods including the support vector ma-
chines (SVMs). Mercer and Grimes (2017) and Su et al. (2020)
tried to optimize the combinations of several RI prediction
methods including the LR, random forest, decision tree, and
SVM. Griffin et al. (2022) fed geostationary satellite infrared
images in addition to SHIPS predictors to a convolutional neu-
ral network. Chen et al. (2023) employed a deep neural network
by using satellite infrared images and the “mimic” passive mi-
crowave images (PMWs) generated from the infrared images.
Kim et al. (2024) tested the use of the net energy gain rate in-
dex, which is qualitatively similar to POT.
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In this study, we develop a deterministic as well as probabil-
istic RI prediction scheme by using an ML algorithm called
Wide Learning (WL) developed by Fujitsu Limited (Iwashita
et al. 2020). WL is an explainable artificial intelligence (XAI).
WL scores each prediction based on a linear combination of
compound predictors (see section 2). This provides explana-
tions like SHIPS while allowing nonlinear dependence on raw
predictors through compounding. As the first step of RI pre-
diction with WL, we only use SHIPS predictors in this study,
which helps comparisons with previous studies. We plan to
use additional data in the future. For convenience of referenc-
ing, we name our method as Wide Learning-based TC rapid
intensification prediction scheme (WRPS).

For comparison with WRPS, we mainly use the LDA
method, which can serve as a benchmark because it has been
widely used since K10. We also use MLR as in SHIPS. Opera-
tional centers do not use SHIPS for RI forecasts presumably
because of its poor performance for RI predictions (DeMaria
et al. 2021; Knaff et al. 2023). However, we show that it can
have a comparable performance to LDA if the ratio of the RI
cases is increased by undersampling non-RI cases in the train-
ing dataset. Such a technique is frequently used in ML practi-
ces, and it is actually used for WL in this study. A similar
approach can be seen in the study of Shimada (2024) who de-
veloped a SHIPS intensity forecast in which regression mod-
els are prepared separately for intensifying, nearly steady, and
weakening TCs; the choice from the three is made based on a
random forest classification.

The rest of the paper is organized as follows. Data and
methods are described in section 2. The performance of the
WL predictions is investigated and compared with other
methods in section 3. The overall features of the WL predic-
tions are investigated in section 4, and case studies are con-
ducted in section 5. Conclusions are drawn in section 6.

2. Data and methods
a. Data

We use SHIPS developmental data for the western North
Pacific published by the Cooperative Institute for Research in
the Atmosphere (https://rammb-data.cira.colostate.edu/ships/
data/ships_predictor_file.pdf). This dataset is designed for de-
veloping SHIPS-like empirical-statistical intensity predictions,
and it consists of 6-hourly data along TC tracks derived from
the National Hurricane Center and JTWC best track data, the
NCEP global model analyses, and geosynchronous meteorologi-
cal satellites. Slocum et al. (2022) conducted a comparison among
the SHIPS developmental data, fifth generation European Cen-
tre for Medium-Range Weather Forecasts atmospheric reanalysis
(ERA)J) data, and dropsonde data.

The period of the data used is 2002-21. The year 2021 is the
last year available at the time when the study is conducted.
We limit our analysis to TCs over the ocean at the prediction
initial time ¢ = 0, which is done by excluding the cases in
which the “INCV” field, the intensity change from the previ-
ous time, is set to missing. Therefore, our analysis includes a
small number of cases in which the TCs are over land at the
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FIG. 1. Schematic illustration of data processing in WRPS1. Each variable is discretized un-
evenly into n (=6) ranges maximizing information entropy. Then, WL is applied to extract
knowledge chunks, each of which consists of consecutive ranges of L (=4) or fewer variables.
The knowledge chunks are conditions favorable or against RI, and these are used to estimate RI
probability. In this figure, “POT: ®®,” for example, means that the value of POT falls in its third

or fourth range.

forecast times. We exclude the first record time for each TC
because INCYV is not available, and we also exclude the last
recorded 18 h for each TC because the intensity change to ¢ =
24 h is not available.

For this study, we use the best track to estimate RI occurrence
and accept the uncertainties associated with the intensity esti-
mates. The total number of the 6-hourly data used is 9648. We
define RI as the 1-min VMAX increase of 30 kt or greater in
24 h. Then, RI occurred in 1018 cases, so the Rl ratio is 10.6%.

We employ two types of predictor treatment regarding the
times at which the training data are taken. The one mainly
used is to use predictor values only at the forecast initial time
(t = 0) or changes from t = —6 h to t = 0. We shall call this as
the “no forecast” (NF) type. The other is to use some of the
environmental values averaged from ¢ = 0 to the forecast time,
which is # = 24 h in this study, while the other predictors as in
the NF type. This is called the “perfect environmental fore-
cast” (PEF) type. The PEF approach is conventionally used to
derive the SHIPS models, and it is suitable for operations.
However, it might be too advantageous in evaluating perfor-
mance, since we do not use operational forecasts in our tests.
Therefore, we mainly use NF cases. Note that both NF and
PEF are within the perfect prog framework as defined in the
glossary of meteorology of American Meteorological Society
(https://glossarytest.ametsoc.net/wiki/Perfect_prognostic).

b. Wide Learning

WL is an XAI whose core algorithm is described by Iwashita
et al. (2020). WL targets classification or discrimination problems
and learns well using limited training data. It exhaustively

searches training data in an efficient way for all combinations of
input variables, and it extracts combinations suitable for the
target discrimination problem as important hypotheses, which
are called “knowledge chunks.” WL version V2210 is used in
this study.

Figure 1 illustrates our data process to use WL. The input
variables of WL are allowed to have only two values: true or
false. Therefore, a continuous predictor variable is discretized
into a fixed number of ranges so that its value can be classified
according to the range it resides. The knowledge chunks are
the combinations of variable ranges. For example, consider
predictor variables a, b, and ¢, which are continuous, and their
values are classified into » ranges relative to the threshold val-
ues a;, b;, and ¢; for i = 1,2, ..., n — 1, which, for example,
gives the nranges of a < aj, a1 =a <ay, ..., a,-1 = afor the
variable a. A knowledge chunk expresses a condition regard-
ing a subset of the predictors, say, a and c, as (ag, AND cy),
where ay; designates whether the value of a falls in some con-
secutive ranges of a. Here, {i} refers to a group of consecutive
i values between 1 and n. For example, when {a;} = {1, 2, 5, 8§,
10} and {i} = {2, 3} (i.e., the value of a is located in the second
or third bin), ay, is equivalent to whether or not a; = a < as,
namely, 1 = a < 5. Also, ¢y is similarly defined. The number of
the variables used in a chunk is equal to or less than a threshold
value of L. After testing, this study uses L = 4.

The discretization threshold values of a predictor are adap-
tively determined unevenly to maximize information entropy,
the average amount of information, so that the correlation be-
tween the discretized predictor and the prediction target is
largely maintained (Fayyad and Irani 1993). It might appear
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TABLE 1. The SHIPS predictor variables used in the 12-predictor version of the WL predictions and in our LDA. The predictor
types are classified into C (climatological or geographical values dependent solely on the location and the day of the year), T
(measures on the state of the TC), and E (environmental conditions). POT is classified as E&T because MPI, which is the maximum
potential intensity from Kerry Emanuel's equation (kt), is E but VMAX is T; Z850 is E&T because of the wide areal averaging; and
ROO00 is predominantly E, but it may partly be T for large TCs. The numbers in the last column are the orders in which the predictors
are selected in the stepwise regression for VMAX prediction at ¢+ = 24 h in the SHIPS model of Y18 for the western North Pacific.
The symbol “(*)” indicates that their definitions are not the same as in this table (e.g., in Y18, OHC is not climatological, and

VMAX is for the 10-min sustained wind).

Acronym Description (units) (radial range if areal average) Time mean if PEF Type Importance in Y18
COHC  Climatological ocean heat content (kJ cm™2) y C 7(%)
DTL Distance to nearest major landmass (km) y C 26
VMAX  Maximum sustained wind (kt) T 6(*)
POT MPI minus VMAX (kt) y for MPI E&T 1
INCV Intensity change from t = —6 to 0 h (kt) T 2(*)
SDIR Standard deviation of IR brightness temperature (10~! °C) (0-200 km) T 8
SHRD  850-200-hPa shear magnitude (10~ kt) (200-800 km) y E 3(*)
T150 150-hPa temperature (10~" °C) (200-800 km) E 23
T200 200-hPa temperature (10! °C) (200-800 km) E 24
T250 250-hPa temperature (10™' °C) (200-800 km) E 19
73850 850-hPa vorticity (1077 s~ 1) (0-1000 km) E&T 11
R0O00 1000-hPa relative humidity (%) (200-800 km) E&T 9

that the number of discretization bins 7 is better to have a suf-
ficiently large value, but using too many divisions can deterio-
rate predictions. After trials, n is fixed to 6 in this study. The
discretization based on information entropy is not a part of
WL, but it is used frequently in its practices.

The climatological fraction of the RI cases is much lower
than non-RI cases. Many ML classification methods do not
perform well if trained with highly unbalanced data, which is
the case for WL too. Therefore, we reduce the fraction of
non-RI cases in the training dataset by undersampling. The
undersampling is made randomly in terms of the six hourly
data, so most of the TCs are used. After some trials, we set
the fraction of RI cases to 30%. Undersampling is not used
for testing as a matter of course.

WL conducts logistic regression for knowledge chunks, so
the RI probability at the forecast time in the undersampled
training dataset, p,,, is expressed as

p

log 1 _“p
u

J
= 21 wix; + c. 1)
=

Here, J is the number of chunks, x; is 1 (0) if the chunk j is
true (false), w; is the weight for the chunk, and c is a constant
offset; w; and c are obtained by training. The deterministic
prediction by WL is RI (non-RI) if p,, is greater than or equal
to (less than) 0.5. Thresholding at p, = 0.5 may appear ad
hoc, since we conduct undersampling. This threshold is rather
an empirical choice that provides good performance (see the
discussion based on the p—r diagram in section 3b). For proba-
bilistic predictions, p,, is adjusted to derive the predicted RI
predictability p by the method described in section 2e.

Our method is similar to R11’s in the sense that it conducts
LR by using SHIPS predictors. However, the variable x; is
created from a combination of SHIPS predictors. Therefore,
p. can express nonlinear dependence on them.

Equation (1) indicates that the degree of freedom of WL
predictions is J. As shown later, J becomes only a few tens, so

WL is good at avoiding overfitting as in the simple LR and
LDA. Another merit of WL is that it can secure full reproduc-
ibility by simply providing the conditions, the coefficients
{wj}, and ¢, as is done in this study.

As described in section 3a, we start by using most of the
variables available in the SHIPS developmental data and sub-
sequently reduce the number of variables by checking perfor-
mance. Table 1 shows our final 12 predictors. The variables
have little data missing (less than 0.03%) except for SDIR
whose data missing fraction is 14%.

c¢. Linear discriminant analysis

To compare with the WL results, LDA is conducted as in
K10. The predictors used in this study are set to the same as
those used in WL, so one can directly evaluate the differ-
ence among the methods. We adopt K10’s thresholding for
deterministic predictions. For probabilistic predictions, we
derive probabilities with the method described in section 2e,
which is shown to perform better than the method of K10
(section 3c).

d. Multiple linear regression

The MLR method used in SHIPS is not customarily used
for RI predictions. However, in the course of the present
study, we found that its performance becomes comparable to
LDA if the training data are undersampled as described in
section 2b. For MLR, we use the 12 predictors introduced
above and, in addition, nine variables including nonlinear
combinations of predictors as in SHIPS as in Table 2. With
MLR, we predict RI when the predicted 24-h intensity change
is greater than or equal to 30 kt.

e. Probabilistic prediction

The RI probability p, for the undersampled datasets
(section 2b) can be converted into the probability without
undersampling as

Unauthenticated | Downloaded 09/13/25 02:26 AM UTC



OCTOBER 2025

TABLE 2. Predictors used in MLR in addition to the 12
predictors in Table 1. In the last column, the symbol (*)
indicates the existence of differences between Y18 and this
study, which is largely due to the differences described in the
caption of Table 1; see Y18 for other differences.

Acronym Definition Importance in Y18
VMA2 (VMAX)? 6(*)
VMPE VMAX x INCV 14(%)
OHC2 (COHC)? 5(%)

SHSH (SHRD)? Unused
VMSH VMAX X SHRD 22(%)
SHVM VMAX/SHRD 16(*)
POT2 (POT)? 10

PMPE (MSLP — 880) X INCV 12(%)
PMSH (MSLP — 880) X SHRD 18(%)

ap,
PrET 0 —ap, @

Here, « is the rate at which the non-RI cases are sampled so
that only 100a% of non-RI cases are used. Equation (2) is de-
rived from the relation p, = p/[p, + a(1 — p,)]. It is readily
shown that

X ®)

where p., which is 0.1055, is the RI ratio in the original dataset
and X is the ratio of RI in the undersampled training data,
which is set to 0.3 in this study. Then, a = 0.275.

If the ML method used is adequate, the probability p,
should be somewhat close to the actual RI ratio in the training
data, but it can be biased. Therefore, in the probabilistic pre-
diction, a better performance is expected if the RI probability
P is derived by correcting the bias in p;. More generally, p; (or
p.) can be treated as a score indicating RI probability. Let s
be such a score; for WL, s = p,. We estimate the RI probabil-
ity P as a function of s as

K
P(S) = kgl Ckpk(s), (4)

where, for each k, pi(s) is a known analytic function of s and
¢ is a constant to be derived; K is the number of polynomials
used. We derive ¢, by the least square fitting to minimize the
Brier score (BS):

BS=l§,{P(s)—a}2 (5)
_Nn=1 n nlt >

where N is the number of the cases used for training, s,, is the
score for the nth case, and

(6)

1, if RI occured actually,
a =
" 0, if RI did not occur.

Note that the resultant P(s) should be a monotonic function
of s if the score s is adequate as a measure of RI probability.
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TABLE 3. “Confusion matrix” introducing the symbols for case
counts a—d in deterministic predictions.

Prediction
Actual RI Non-RI
RI a (true positive) b (false negative)
Non-RI ¢ (false positive) d (true negative)

The choice of the functions p,(s) and their number K should
be made under this principle. In this study, we simply set as
pi(s) = s*; a nonzero intercept is not introduced from the ex-
aminations of the results.

K10 related the LDA score to the RI probability through a
linear interpolation/extrapolation by coarsely binning RI ratio
along s. The relationship between K10’s and our methods is
shown in the appendix. Like ours, K10’s method is designed
to reduce biases by using classification results, and it is close
to minimizing BS.

f- Evaluation metrics

For the deterministic forecast, we use the following meas-
ures (see Table 3 for symbol definitions):

e Precision: p = a/(a + ¢) (the ratio of true predictions among
all positive predictions).

e Recall (the probability of detection): r = a/(a + b) (the ra-
tio of true predictions among all RI cases).

e F1 measure: F=2pr/(p +r)=alla+ (b + c)/2] (balanced
measure of precision and recall).

e False alarm rate (FAR): f = ¢/(c + d) (the ratio of false
predictions among all non-RI cases).

e Peirce skill score (PSS) = r — f (a balanced measure of
true and false detections).

As in many ML related studies, we treat F1 as the most impor-
tant measure, since it balances precision and recall that tend to
trade off each other. Note that F1 is qualitatively similar to but is
greater than the threat score, a/(a + b + ¢) = pr/(p + r — pr).

Probabilistic predictions are evaluated with the Brier skill
score (BSS):

BS

Bss=1—sta. %)

Here, BS is defined by Eq. (5), and BS, is the BS in which the
predicted probability is replaced by the constant climatologi-
cal one, p..

g. Training and testing sets and cross validation

For evaluation, we use four-fifths of the 20 years for train-
ing (16 years) and the remaining one-fifth (4 years) for testing.
Cross validation is conducted by averaging the performance
from the five cases in which test is conducted by using the
years 1) 2002, 2007, 2012, and 2017; 2) 2003, 2008, 2013, and
2018; 3) 2004, 2009, 2014, and 2019; 4) 2005, 2010, 2015, and
2020; and 5) 2006, 2011, 2016, and 2021. The performance
metrics for cross validations are the averages of those for the
five sets.
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TABLE 4. The cross-validation performance metrics for deterministic predictions to compare the 71-, 47-, and 12-predictor versions
of the NF-type WL prediction for the RI from ¢ = 0 to 24 h. The values are shown as the mean * the standard error over the five

test sets, which is the sample standard deviation divided by V5. The F1 and BSS measures are shown with bold fonts, since they are

treated as the most important metrics.

No. Precision Recall F1 FAR PSS BSS

71 0.420 = 0.031 0.518 = 0.013 0.463 + 0.024 0.086 = 0.007 0.432 = 0.018 0.199 * 0.035

47 0.420 = 0.025 0.487 *= 0.028 0.451 * 0.026 0.079 = 0.004 0.408 = 0.027 0.183 = 0.030
12 (WRPS1) 0.429 *= 0.028 0.553 = 0.020 0.482 = 0.024 0.088 = 0.006 0.465 *= 0.023 0.225 + 0.035

The final WL model of this study is created by using the entire
20 years for training. Its metrics are derived by using the entire
data for the same 20-yr period without conducting undersamp-
ling. We shall call this the training data test.

3. Parameter selection and prediction performance
a. Reduction of predictors

The SHIPS developmental data for the western North
Pacific has ~100 variables, and high correlations exist among
some of them. Using so many variables makes interpretation a
difficult task, even though it may not hinder achieving good per-
formance. We began by using 71 predictors, which are listed in
Table S1 in the online supplemental material. Then, the number
was first reduced to 47 by excluding predictors that are redundant,
have high correlation with others, or are produced secondarily
from other variables (see the caption of Table S1 for further ex-
planation). After some further trials and referencing Y18 (see the
caption of Table S1), we finally reduced the set to the 12 predic-
tors in Table 1. The 12 predictors are not a simple subset of the
47 or 71 predictors, since MPI is used instead of POT in the
47- and 71-predictor versions. Also, use of SDIR is introduced for
the first time in the 12 predictors. We call the 12-predictor version
of the RI prediction with WL as WRPS version 1 (WRPS1).

We provide here a few remarks on some of the 12 predic-
tors that are not frequently used for SHIPS or LDA. In many
studies (e.g., DeMaria et al. 2005, K10, Kaplan et al. 2015,
Y18), the intensity changes over the past 12 h are used, but we
use the 6-h changes because it provided better performance in
our test. Customarily used ocean heat content (OHC) is time
dependent, changing year to year. Instead, we use the climato-
logical OHC (COHC) just because time-dependent OHC is

not available in the SHIPS developmental data for the western
North Pacific. As for low-level humidity, averages over 850—
750 hPa are used more frequently. Our choice to use R000 is
not a result of the performance test, but it comes from the fact
that it was found useful by Y18 for 24-h VMAX prediction for
the western Pacific, which was systematically selected in their
study. It will be shown below that R000 is infrequently used in
our result, so it might be desirable to change it or simply not
to use it in future. Use of three pressure levels (150, 200, and
250 hPa) for environmental temperature in such a limited pre-
dictor set may be redundant. Again, this choice is not elabo-
rated by performance, so further investigation would be
desirable if further simplification is wanted.

The performance metrics obtained by cross validation for
the 71-, 47-, and 12-predictor versions are shown in Table 4.
The overall performances are similar among the three. The
mean F1 and BSS values of the 12-predictor version (WRPS1)
are rather slightly better than the other two. The improvement
might be due to the use of POT instead of MPI, or it might be
due to the use of SDIR. However, the improvement is rather
small in light of the standard errors.

b. Performance of the NF-type 24-h predictions

In the rest of this paper, we solely use the 12 predictors for WL
(WRPS1). Table 5 compares performance metrics for WL and the
other methods obtained by the cross validation of the NF-type
24-h predictions. It also shows the training data test results for our
final WL model created by using the 20-yr data for training.

The cross validation shows that WRPS1 performs best among
the four methods. The F1 and PSS values, 0.482 and 0.465, re-
spectively, are quite high. These values are comparable to those
reported by Kim et al. (2024), who conducted the NF-type

TABLE 5. The performance metrics for the NF-type predictions for the RI from ¢ = 0 to 24 h: from precision to PSS for

deterministic predictions and BSS for probabilistic predictions. (second row—fourth row) The cross validation for WL (WRPS1),
LDA, and MLR with and without undersampling (United States). (bottom row) The results of the training data test, in which the
entire (not undersampled) data for the 20-yr training period are used for evaluation. Values from the cross validation are shown as in
Table 4.

Test type Method Precision Recall F1 FAR PSS BSS
Cross validation WRPS1 0.429 = 0.028 0.553 = 0.020 0.482 = 0.024 0.088 = 0.006 0.465 = 0.023 0.225 = 0.035
LDA 0.354 = 0.030 0471 = 0.031 0.404 = 0.031 0.102 = 0.004 0.370 = 0.034 0.140 = 0.023
MLR w/ 0.444 = 0.048 0.389 = 0.036 0.414 = 0.041 0.058 = 0.005 0.331 = 0.040
United States
MLR w/o 0.518 = 0.061 0.074 = 0.011 0.128 = 0.018 0.008 = 0.001 0.066 = 0.011
United States
Training data WRPS1 0.453 0.601 0.517 0.086 0.515 0.260

test
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(b) Training data test
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FI1G. 2. Histogram showing the actual 24-h intensity (1-min VM AX) changes in the data we used. The orange (blue)
portions indicate those predicted to RI (not to RI) by WRPSI1: (a) cross validation and (b) the training data test of
the final WL model obtained by using the 20-yr training data.

prediction too, even though we did not introduce their threshold-
ing to limit to the cases where VMAX is 34 kt or higher. Accord-
ing to their Table 1, their RI ratio is 15.5%, which is higher than
ours (10.6%). It should be noted that classification problems gen-
erally become easier if events are not as rare. Therefore, a direct
comparison of our results with their results is not possible. The
F1 value of the RI prediction reported by Chen et al. (2023)
is 0.36. This is lower than our result, but they used 24-h
30-kt increase in the 10-min maximum wind to define RI, which is
less frequent than that for the 1-min maximum wind (7.9% in their
study). Therefore, the direct comparison is again unavailable.

As shown in Table 5, the MLR performs poorly if the entire
training data are used, but it performs comparably to LDA if the
training data are undersampled. This is understood because MLR
is not good at handling outliers. Our sampling strategy is some-
what in liaison with Shimada (2024) who prepared multiple MLR
models for different VMAX-change ranges (see section 1).

In comparison with other ML results (e.g., Kim et al. 2024),
a remarkable feature of the WRPS1 results is that the metrics
values are not very different between the training data test
and the cross validation (see Table 5). This is likely because
the degree of freedom is limited, as stated in section 2b. In this
respect, WRPS behaves similarly to LDA and simple LRs.

Figure 2 shows the histogram of the actual (recorded) 24-h
intensity changes along with classification results by WRPS1
shown with colors. In both cross validation and training data
test, the prediction to RI is mostly limited to intensifying cases.
Also, most of the cases in which the actual intensification was
greater than 40 kt are correctly predicted as RI. The ratio at
which Rl is predicted is around 14% in both cases (Table 6).

Figure 3 shows the histograms in terms of the predicted RI
probability p; which is the score from WL. From this figure,
one can see how deterministic prediction changes according
to the threshold in p,; the value used, p,, = 0.5, corresponds
to p; = 0.215 when p, = 0.1055. As shown in Fig. 4, precision
and recall trade off each other, and the figure indicates that
the present threshold is adequate in terms of the F1 measure.

c¢. Probabilistic prediction

As described in section 2e, we estimate RI probability as a
function of p; by minimizing BS. This optimization is done
solely based on the training data test using the entire 20-yr
data. We set p, (p,) = p¥ and tested the polynomial orders K
from 1 to 5 and additionally 10. The BSS is 0.222 for K = 1
and 0.225-0.226 for all the rest (K = 2, 3, 4, 5, 10). Therefore,
we use the simplest among the latter, K = 2, which resulted in
the following for the NF-type # = 0-24-h RI prediction:

P(p,) = 1.134p, — 0.296p;. (8)

The black solid curves in Fig. 5 visualize Eq. (8). As ex-
pected, P(p;) matches the actual RI ratio (orange bars) in the
training data test (Fig. 5b). Furthermore, it also matches the
actual RI ratio in the cross validation (Fig. 5a). This result in-
dicates that the WL-based probability prediction is largely un-
biased. This nice feature is presumably because the limited
degree of freedom in WL predictions suppresses overfitting.

To be unbiased, however, is not sufficient to be a good predic-
tion. A perfect prediction with BSS equal to 1 is only achievable
when the predicted probability is only O or 1, and furthermore,
the prediction is 100% correct. We find from Fig. 3 that a consid-
erable portion of the probability prediction falls around the
climatological RI probability of 11%. For better prediction, we

TABLE 6. Case counts and percentage from the NF-type
deterministic WRPSI predictions for RI from ¢ = 0 to 24 h.

Prediction

RI Non-RI

Cross validation

Actual RI 566 (5.9%) 452 (4.9%)
Non-RI 752 (7.8%) 7878 (81.7%)
Training data test
Actual RI 612 (6.3%) 406 (4.2%)
Non-RI 739 (7.7%) 7891 (81.8%)
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FIG. 3. Histograms with respect to p,, the WL-based probability defined by Eq. (2) for (a) cross validation and
(b) training data test. (c),(d) Close-ups of (a) and (b), respectively, for low values. The coloring is as in Fig. 2. The
vertical dotted lines show the threshold p, corresponding to p,, = 0.5.

need not only unbiased but also a bimodal distribution along
P(p,), which poses further challenges.

It is not straightforward to compare the present BSSs with
previous studies. For reference, R11, who employed PEF-
type predictions and conducted the leave-one-out cross

(a) Cross-validation
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validation, reported BSSs for the simple LR and LDA predic-
tions of 30-kt RI around 0.15 and 0.11, respectively, for the
Atlantic; the values are around 0.28 and 0.22 for the eastern
Pacific (see their Fig. 1). Therefore, there is a large basin de-
pendence in the difficulty of predicting RI.

(b) Training data test
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FIG. 4. The precision-recall diagrams that visualize the dependence on changing the RI threshold: (a) from the
cross validation, for which the results for the five validations sets are shown by blue curves with different line types
[PR(i) = tested with the years 2001 + i + 5/,1 = 0, 1, 2, 3], and (b) from the training data test. The p—r values for the
deterministic RI predictions (p,, = 0.5) are marked by the bullets. F1 values corresponding to the combinations of
p and r are indicated by the colored contours.
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(b) Training data test
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F1G. 5. The ratio of actual RI depending on p, (orange bars) for (a) the cross validation and (b) training data test
for the NF-type 24-h WRPSI1 predictions. The black solid curves show the optimized RI probability P(p;) derived
from the 20-yr training result, Eq. (8), where K = 2. For reference, the dotted curves show P(p;) when K = 5, which is

not used in our probabilistic prediction.

Contrary to the WRPSI results, P(p;) for the LDA predic-
tion is nonmonotonic (Fig. 6; p; for LDA is derived from its
assumption of the normal distribution). The BSS for LDA in
Table 5, which is 0.140, is for K = 2. We speculate that the
nonmonotonicity arose from the presence of the “range”-type
crucial predictors, VMAX and POT.

As mentioned in section 2f, the probability assignment
method by K10 is designed to reduce biases, as it is the case in
the present method. Therefore, we also tried their method,
but the resultant BSS for WRPS1 was only 0.129, much lower
than that obtained by the present method. This result indi-
cates the merit of our probability assignment.
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FIG. 6. As in Fig. 5b, but for LDSA. The black solid curve shows
the optimized RI probability P(p;) for K = 2, while the black dot-
ted curve shows that for K = 3, for reference.

0.8 1.0

d. Performance of the PEF-type 24-h predictions

Here, we examine the performance of the PEF-type RI pre-
dictions from ¢ = 0-24 h. The difference from the NF-type
predictions is that some environmental predictor variables are
the averages over t = 0-24 h. This is close to the practice of
operational forecast, but our evaluation uses SHIPS develop-
mental data, which is based on observations and reanalysis.
To avoid excessively good performance by using such data,
we take a conservative approach to apply time averaging only
to four variables, COHC, DTL, MPI (for POT), and SHRD,
as indicated in Table 1. These parameters depend on TC
tracks and the environmental shear.

The resultant performance is summarized in Table 7. The
F1 value for WRPS1 only slightly increased from 0.482 to
0.488, well within the reach of the standard errors. This result
could be interpreted to mean that, when WL is used, it is not
important to use predicted TC track and environmental shear.
However, this feature might be limited to WRPSI1, as it may
change, for example, by using predictors unused in WRPSI1.

The PEF and NF differences are slightly greater for the
LDA and MLR. The skill scores for probabilistic predictions,
BSS, of WRPS1 and LDA are also slightly higher for PER
than NF.

e. Performance of the NF-type t = 24—48-h predictions

It is of interest to know how long the ¢ = 0 predictors pos-
sess information on the RI at later times. A possible way to
examine it is to define RI for t = 0-36 or 48 h (e.g., Kaplan
et al. 2015). In this study, we rather take a simple approach to
examine the predictions of RI that occur from 7 = 24 to 48 h.
This is an ad hoc choice, but we can use the same threshold,
30 kt (24 h) !, and make a direct comparison with the predic-
tion of the r = 0-24 h RI. Here, we only conduct the NF-type
predictions.
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TABLE 7. As in Table 5, but for the PEF-type RI predictions for ¢ = 0-24 h.
Test type Method Precision Recall F1 FAR PSS BSS
Cross validation WRPS1 0.437 = 0.022 0.555 = 0.033 0.488 = 0.024 0.085 = 0.005 0.471 = 0.032 0.239 = 0.035
LDA 0.367 = 0.025 0.496 = 0.024 0.422 = 0.025 0.101 = 0.003 0.395 = 0.026 0.154 = 0.025

MLR w/ United States 0.472 = 0.045 0.417 = 0.030 0.442 = 0.036 0.055 = 0.004 0.361 = 0.034
MLR w/o United States 0.560 = 0.056 0.082 = 0.010 0.143 = 0.017 0.007 = 0.001 0.075 = 0.010

Training data WRPS1 0.465

test

0.607

0.527 0.082 0.525 0.288

Table 8 summarizes the results. As expected, the perfor-
mance deteriorates from the 0- to 24-h prediction. However,
the F1 value still amounts to 0.397 (Table 8) as opposed to
0.482 in Table 5. The BSS for the t = 24-48-h WRPS1 predic-
tion, 0.124, is also lower, but it is not meaningless. These re-
sults indicate that predictability exists in the SHIPS predictors
on RI over 2 days.

4. Overall features of the WRPS1 predictions

Here, we examine the results of the t = 0-24-h NF-type
WRPSI trained by the 20-yr data, our final scheme for the
24-h RI prediction. The constant in Eq. (1) is ¢ = —0.3536.
The knowledge chunks, which are the conditions to evaluate
x;, and their coefficients w; are fully provided in Tables S2 and
S3 for positive and negative chunks, respectively; here, posi-
tive (negative) chunks denote the chunks with positive (nega-
tive) w; values, which are favorable (detrimental) to the
occurrence of RI. The tables also provide some statistical
properties of the chunks such as the fraction of the cases satis-
fying the condition (support) and the fraction of the RI occur-
rence in the following 24 h among them (confidence).

The ways in which the predictors appear in the chunks are
summarized in Table 9. It shows the number of chunks in
which each predictor is used. The counts are classified into six
types: P/pos, R/pos, N/pos, P/neg, R/neg, and N/neg. This is
based on whether it appears in the positive (pos) or negative
(neg) chunks and whether it is favorable to RI when the value
is large (P), small (N), or in a range (R). The table also shows
the summation of the weights associated with each variable.

Not surprisingly, COHC is the most frequently used predic-
tor, as latent heat supply is crucial for TC intensification. On
the other hand, R00O is used only in a chunk that has a small
weight (Table S2), so removing it from the predictor set
would have little impact on the prediction. The linear RI
models (LDA, MLD, and simple R11-type LR) treat their
predictors equally for the positive and negative predictions.
In WL, positive and negative impacts are treated separately,
and there is asymmetry between them. For example, VMAX
appears only in the positive chunks, and T200 appears mainly

in the negative chunks (Table 9). T250 appears both in the posi-
tive and negative chunks, but it is always as T250 > —39.6°C,
which is meaningless if it were not combined with other parame-
ters differently between the positive and negative chunks. Since
the offset ¢ is negative, RI is never predicted if no positively
weighted condition is met. Therefore, when COHC is lower
than 63 kJ cm ™2, R1 is always missed (Table S2).

The positive chunks are fewer than the negative chunks,
while the negative chunks tend to consist of fewer predictors
than the positive chunks (Tables S2 and S3). One of the rea-
sons for this asymmetry should be the existence of predictors
that are favorable to RI at moderate values. If, for example,
RI tends to occur when the predictors a and b satisfy a; < a <
a, AND b > by, the unfavorable conditions can be expressed
asa < a; ORa > a, OR b < by. Such a tendency is broadly seen
in joint distributions of the predictors as partly shown in Fig. 8,
where RI cases tend to be distributed more narrowly. It is also
noteworthy that positive (negative) chunks tend to have relatively
high (low) support and low (high) confidence (Tables S2 and S3).

In the positive chunks, POT and VMAX are used some-
what interchangeably (Table S2). This feature is understood
from the POT-VMAX joint distributions (Fig. 8a), where up-
per bounds of POT (=MPI — VMAX) tend to depend on
VMAX because MPI tends to be limited. Contrarily, only
POT is used in the negative chunks (Table 9).

Based on the counts shown in Table 9, the overall evalua-
tion of each predictor is summarized in the last column of the
table. The summary is about whether the predictor is favor-
able to RI when it is large (pos), small (neg), having moderate
values (range), or can be positive or negative (mixed). Most
of the evaluations are consistent with the differences between
the RI- and non-RI-case distributions shown in Fig. 7 except
for the mixed-type ones. For example, VMAX and POT are
favorable to RI when having moderate values, which is consis-
tent with being range-type variables. Note that range-type
variables are not quite suitable for LDA or simple LR. Two
frequently used variables, VMAX and POT, are classified as
range-type variables. All conditions regarding VMAX are
ranges. POT has R/pos and P/neg counts, so it might be better

TABLE 8. As in Table 5, but for the NF-type RI predictions for t = 24-48 h and for the omission of the training data test.

Test type Method Precision Recall F1 FAR PSS BSS
Cross validation WRPS1 0.321 £ 0.027 0.525 * 0.039 0.397 = 0.029 0.127 + 0.011 0.397 = 0.034 0.124 = 0.024
LDA 0.272 = 0.031 0.398 * 0.035 0.322 = 0.034 0.123 = 0.006 0.275 = 0.038 0.090 = 0.024

MLR w/ United States 0.300 * 0.036 0.259 = 0.021 0.274 = 0.025 0.072 = 0.009 0.187 = 0.022
MLR w/o United States 0.024 = 0.024 0.006 = 0.006 0.010 = 0.009 0.005 = 0.004 0.001 = 0.002
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TABLE 9. The numbers of times at which each predictor appears in the knowledge chunks of the NF-type 24-h RI prediction of
WRPSI, which are described in Tables S2 and S3; also shown are the total weight and the overall evaluation of each predictor regard-
ing RI prediction. The chunks are classified into the positive and negative ones: the positive (negative) chunks are the ones having
positive (negative) weights in Eq. (1), whose total number is 18 (55) as in Tables S2 and S3. The counts are classified into six catego-
ries: P/pos: The variable is favorable to RI when large by having a lower threshold in positive chunks; N/pos: The variable is favor-
able to RI when small by having an upper threshold in positive chunks; R/pos: The variable has a favorable range for RI in positive
chunks; P/neg: The variable is favorable to RI when large by having an upper threshold in negative chunks; N/neg: The variable is fa-
vorable to RI when small by having a lower threshold in negative chunks; and R/neg: The variable has a favorable range for RI in
negative chunks (note that R/neg is O for all the predictors). Asterisks (*) are added to the counts greater than one-fourth of the total
chunk counts, 18 for the positive and 55 for the negative chunks. The column “Sum (pos)” shows the summation of the weights of
the positive chunks that include the variable. The column “Sum (neg)” is the same but for the negative chunks. In the last column,
the overall predictor-value evaluations are classified into one of “pos” if favorable to RI when large, “neg” if favorable to RI when
small, “range” if favorable to RI when having a moderate value, and “mixed” if the effects are positive or negative depending on

chunks.

Acronym Plpos R/pos Nipos Sum (pos) P/neg R/neg Nineg Sum (neg) Evaluation
COHC T*/18 11%/18 0/18 3.388 31%/55 0/55 0/55 —4.833 Pos
DTL 1/18 0/18 0/18 0.137 19%/55 0/55 0/55 —1.547 Pos
VMAX 0/18 11%/18 0/18 2.360 0/55 0/55 0/55 0 Range
POT 0/18 7%/18 0/18 1.028 30%/55 0/55 0/55 —2.265 Range
INCV 5*/8 0/18 0/18 0.840 30%/55 0/55 0/55 —4.095 Pos
SDIR 0/18 0/18 11#/18 1.733 3/55 0/55 8/55 —1.348 Neg
SHRD 0/18 0/18 7*/18 1.942 0/55 0/55 6/55 —0.958 Neg
T150 0/18 0/18 2/18 0.296 0/55 0/55 8/55 —1.253 Neg
T200 0/18 1/18 0/18 0.731 0/55 0/55 16%/55 -1.022 Neg
T250 4/18 1/18 0/18 0.532 0/55 0/55 6/55 —0.605 Mixed
7850 0/18 0/18 3/18 0.517 8/55 0/55 0/55 -1.163 Mixed
R000 0/18 0/18 1/18 0.049 0/55 0/55 0/55 0 Pos

classified as both the pos and range types. COHC is classified
into the pos type despite a large R/pos count, since the upper
limits there are large, so the conditions are not very different
from being P/pos.

5. Case studies

In this section, we conduct case studies and show how one
can utilize WRPSI results for case diagnosis. We examine the
results for 2021 based on the NF-type WRPSI1 predictions
trained by the 20-yr data. Figures 9-11 show selected cases,
and the results for all the remaining named tropical storms
and typhoons are shown in the supplemental material as
Figs. S1-S16.

Figure 9 shows the result for Typhoon Surigae (2021) whose
lifetime high VMAX is 170 kt, well above the category-5
threshold of 137 kt. It experienced consecutive 24-h RIs from
15 to 17 April 2021 as indicated by the red bullets underneath
the intensity. The predicted RI start times (orange bullets)
largely reproduce the actual RI start times, indicating the use-
fulness of WRPS1. The predicted RI starts with two false
alarms at 0000 UTC 15 April and 0600 UTC 15 April, but all
the succeeding actual RIs are predicted without further false
alarms. The figure shows the contributions of individual pre-
dictors as a part of rhs of Eq. (1):

wW.X.

Syars = > - ©)

Vars >
j€{chunks including Vars} mj

where Vars can be a single variable such as COHC or can be
a list of variables such as VMAX and POT and m; is the

number of variables used in the chunk j (1 = j = 4). For ex-
ample, the condition (chunk) having the highest weight (at
the top of Table S2) consists of ranges of four variables,
COHC, SHRD, T200, and VMAX, so the weight 0.731 di-
vided by 47 001837 is added to SCOHC’ STZ()(); SSHRD: and
Svmaxpor (here, Symaxpor = Svmax + Spor). As such,
plotting Sv.s visualizes how the predictors jointly contribute
to the prediction. The summation of Eq. (9) for all the predic-
tors is equal to the summation in the rhs of Eq. (1).

Figure 9 suggests that, in the prolonged extreme RI of
Surigae, all of locations (COHC), intensity or intensification
potential (VMAX or POT), environmental wind shear
(SHRD), upper-tropospheric temperature (T150, T200, or
T250), and upper-level cloud distributions (SDIR) were fa-
vorable to RI. The previous 6-h intensity change (INCV) was
slightly against RI in the early phase of the prolonged RI, and
it became weakly favorable later. The continuation of many
favorable factors over several days appears the source of the
extreme intensification of Surigae. One may wonder why the
impact of INCV can be negative even when the TC is intensi-
fying. This is because there exist a number of negatively
weighted chunks that require INCV to be not too large
(Table S3), which indicates that some of the negative impacts
associated with other predictors can be ineffective when the
current intensification is at a high pace.

Figure 10 (Typhoon Conson) and Fig. 11 (Typhoon Rai)
show similar cases in terms of tracks and environmental con-
ditions. While RI was predicted for both typhoons, actual RI
occurred only in the latter. RI was predicted four times for
the former (Conson) not only because COHC and “VMAX
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FI1G. 7. Frequency distributions of the 12 predictors for each of RI (orange) and non-RI (blue) cases,
which are smoothed by using the kernel density estimation (optimized except for INCV. See statistics
textbooks for the standard way of kernel density estimation. Since INCV is coarsely discretized by 5 kt,
a wider smoothing was used to avoid wiggles.) Vertical dotted lines are the discretization boundaries ob-
tained for the NF-type 24-h prediction.
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FI1G. 8. Selected two-predictor joint distributions for each of RI (orange) and non-RI (blue) cases: (a) VMAX vs
POT, (b) COHC vs INCV, (c) COHC vs POT, and (d) T150 vs INCV. Dotted lines are discretization thresholds for
the NF-type t = 0-24-h RI predictions. Smoothing is applied as in Fig. 7. Color shading is made to equally divide from
0 to the maximum into six ranges (every 16.6%), where the lowest range is not colored.

or POT” were favorable but also because shear was weak and
the upper-tropospheric temperature was low (Fig. 10). The RI
was predicted when the TC was close to Philippines, so the
false alarm might be due to the detrimental effect of DTL is
not sufficiently diagnosed. However, Fig. 11 shows that the
second RI of Rai also occurred near Philippines, so finding
appropriate conditions regarding DTL might not be an easy
task. Typhoon Rai was born in December, so even though its
track was slightly south of Conson, the climatological ocean
conditions were more favorable to the RI of Conson (the pre-
dicted RIs of Conson occurred when COHC was in the third
and fourth highest range, while the predicted RIs of Rai oc-
curred solely when COHC was in the fourth highest range).
We checked SST data for Conson and found that it was close

to the climatological value. Therefore, the false alarm to pre-
dict RI of Conson appears to suggest the necessity to consider
factors that affect intensity changes other than the present
predictors.

It is interesting that the two RIs of Rai were predicted
though not perfectly (Fig. 11). The COHC-related score sum-
mation Scogc in Fig. 11 drops sharply at the end of the first
consecutive RI start times on 15 December. This drop is not
by the fall of COHC, which remained in the fourth highest
range (not shown). The fall rather occurred because VMAX
increased to 120 kt, which is in the second highest VMAX
range, and POT decreased to 30 kt, which is in the second low-
est POT range. Thus, positive conditions, all of which include
COHC (Table S2), are not met anymore. The prediction of

Unauthenticated | Downloaded 09/13/25 02:26 AM UTC



1872

WP022021

- o
N o
o o

VMAX (kt)
o & 8
\

2 ‘
% 80 S RN
< e A
2 4 P "
0 ]
13 14 15 16 17 18 19 20 21 22 23 24
APRIL
2021
Rl start 0000000
Prediction
Pu p—— T CE—
cone - - .
DTL
VMAX,POT ~ ——— —
INCV ——— T U
SDIR
SHRD —_—
T150,T200,T250——
7850

FIG. 9. The track, intensity, and RI predictions for Typhoon
Surigae (2021). Intensities are colored with respect to the Saffir—
Simpson scale. The start times of the actual RI over the following
24 h are shown by red bullets underneath the intensity plot, and
the RI start times predicted by the NF-type WRPSI are shown by
orange bullets. The RI predictions are also shown by p,, in Eq. (1);
its background gray shading shows the range from 0 to 1. The val-
ues greater than (lower than or equal to) 0.5 are indicated by the
orange (blue) color. Also shown are contributions of the predic-
tors: Sconc SprL, SvMAX,POT: SINCV> SSDIRs SSHRDs ST150,1200,12505
and Szgso. Here, Sgrogo is not shown because the chunk including
RO00 was not used at any time for this typhoon. Orange (blue)
color shows positive (negative) values. The interval between the
plots is 2.5, so, for example, both Sconc and Sincy were around
—2 from 22 to 24 Apr.

the second RI was made possible by the drop of VMAX (and
thereby the increase of POT) after the first intensity peak.
In detail, the beginning of the second actual RI at 0600 UTC
17 December was not predicted because the intensity was de-
ceasing, so INCV was negative. Note that the actual 24-h inten-
sity change from 0600 UTC 17 December marginally satisfies
the RI condition, and the 24-h change from 1200 UTC 17, to
which the RI prediction was successful, is much greater.

Figures S1-S18show the remaining cases in 2021. These fig-
ures indicate the overall adequacy of the WRPS1 predictions.
It also provides further insight into the conditions of RI occur-
rence and how they can be visualized.
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FI1G. 10. As in Fig. 9, but for Typhoon Conson (2021).

6. Conclusions

We have developed a deterministic as well as probabilistic
RI prediction scheme WRPS, version 1 (WRPS1), based on
WL, an XAL It uses only 12 predictor (input) variables that
are available in the SHIPS developmental data for the west-
ern North Pacific. The 12 predictors consist of parameters on
the climatological or environmental conditions such as envi-
ronmental shear and the state of TCs such as intensity. The
predictors are basically evaluated at the initial time of the pre-
diction, t = 0 (NF-type prediction), but we also tested some of
the environmental variables averaged from ¢ = 0 to 24 h along
TC tracks, as is done in many RI prediction schemes (PEF-
type prediction).

Each of the WRPS1 predictors is discretized into six ranges
to maximize information entropy in terms of distinguishing
RI and non-RI cases. Then, WL is used to extract joint condi-
tions called knowledge chunks, each of which consist of
ranges of four or less predictors; the chunks are either favor-
able or detrimental to RI occurrence. Finally, LR is con-
ducted to obtain a formula to evaluate RI probability. While
this probability is directly used in the deterministic RI predic-
tion, we have devised a method to adjust it by using a least
square fitting to minimize the Brier score. This adjustment
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FI1G. 11. As in Fig. 9, but for Typhoon Rai (2021).

method is general, so it is useful to improve other methods
such as LDA and the simple LRs using raw predictors. The
chunks of WRPS1 and the coefficients in Eq. (1) are fully pro-
vided in the supplemental material, so one can precisely re-
produce WRPS1 predictions without using WL. Since the
chunks are simple combinations of predictor ranges, one can
grasp conditions favorable or detrimental to RI, which is how
WL is explainable. These are the unique features of WRPS
among ML-based schemes, which tend to be in black boxes. It
was found that WRPS1 does not suffer much from overfitting.

The fact that the chunks consist of ranges of multiple varia-
bles enables WRPS1 to handle interdependence on predic-
tors, and it also facilitates handling predictors favorable to RI
at moderate values (range-type predictors). These features
are not covered by MLR or the simple LRs. It was shown that
the range-type predictors, VMAX and POT, are indeed im-
portant and that the separation into the positive and negative
chunks facilitates their proper handling. Note that SHIPS
deals with range-type predictors by including predictors that
are the squares of some predictors. It was shown that SHIPS
exhibits good performance in deterministic RI prediction if
the Rl ratio in the input data is increased.

In the case studies, we demonstrated how WRPS predictions
can be analyzed to provide insights on RI occurrence. This is
done by quantifying the impacts of individual predictors on joint
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conditions favorable or detrimental to RI. Such a diagnosis can
supplement implications from LDA or SHIPS. The case studies
also demonstrated the overall adequacy of WRPS1.

Still, both F1 and BSS (deterministic and probabilistic pre-
diction scores, respectively) of WRPS1 are much smaller than
the perfect value of 1, so further improvement is wanted. That
would likely require one to make use not only of further envi-
ronmental conditions but also of internal conditions of TCs.
The ability of WL to handle nonlinear dependence among
predictors leaves room for such improvements, and its ex-
plainability could then contribute to enhance scientific under-
standing on the conditions to RI, so we envision further
development.

The present study is based on the SHIPS developmental
data, which includes postprocessed data such as the best track.
However, from the overall robustness shown in this study, we
expect that WRPS1 performs similarly when applied to real-
time data.
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APPENDIX

Relationship between BS-Minimizing and
Histogram-Based Probability Mappings

We show here that the present probability mapping to
minimize BS by using the least square fitting is closely re-
lated to K10’s mapping method to derive RI probability.
Equation (5) is easily rewritten as follows:

BS = f FOLPE)s =17 + [1 = P@lsds, (A1)
0

where s is the score of the incidence to predict, which is to RI
here; f(s) is the number distribution of the cases whose inte-
gration is normalized to 1, i.e., the sample-based probability
distribution function; and P(s) is the predicted probability of
the incidence as a function of the score.

Since f(s) is based on samples, it is not continuous or
smooth, so making a histogram along s is done customar-
ily, as in Fig. 3. Binning Eq. (Al) yields the following
approximation:
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C
BS = 2fip; (P, = 1" + (1 = p)P}),

C
= ];fj{(Pj —p) +pL=ph, (A2)

where f; is the total number of the cases in the binj = 1.2, ...,
C; P;is the predicted probability of the incidence; and p; is the
actual fraction of the cases in which the incidence occurred.
From Eq. (A2), BS is approximately minimized by setting

P i~ Py (A3)
K10’s approach is to make four bins along s. Each of them in-
cludes the same number of RI cases. By using p;, they defined
P(s) that is piecewise linear between the s boundaries, so it
minimizes BS to the extent allowed by the coarse binning.
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